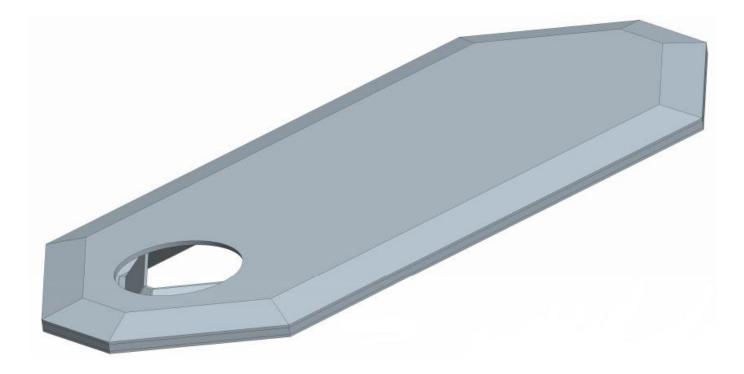
# Structures Team


The University of Alabama
Amber Deja, Victoria Reasoner, Clay Lemley
10/27/2014





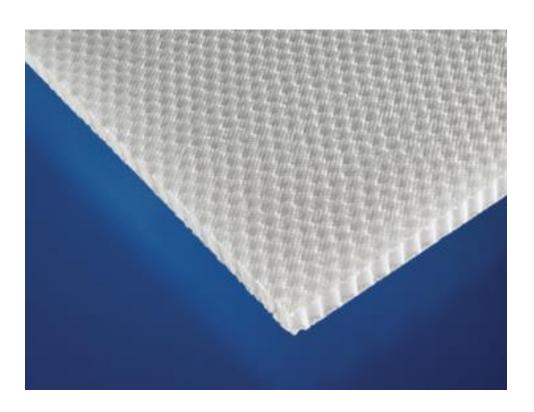
# **Hull Design**

- Based on Chris Sorgatz's design
- Similar to 2013-2014 Hoverteam design
- 160.3 inches long (Approx. 13.35 ft.)
- 68.3 inches wide (Approx. 5.7 ft.)








#### Hull Structure

Fiberglass

Resin

- Polypropylene honeycomb material
  - 1" thickness 3 sheets
  - 0.5" thickness 9 sheets
  - Total of 384 ft<sup>2</sup> will be ordered
- Light (total of 35 lbs. to construct hovercraft)
  - Aids in flotation
- Cost effective
  - \$55 per 1" sheet
  - \$35.75 per 0.5" sheet
- Ease of use
  - Cuts smoothly







Hull Structure

Fiberglass

Resin

Other

#### **PP Honeycomb Core Mechanical Properties**

| CORE                                                    | CELL SIZE |      | DENSITY            |       |         | FLATWISE<br>TENSILE <sup>1</sup> |          | BARE COMPRESSION <sup>2</sup> |         |      |         |                           |                     |                    | PLATE SHEAR <sup>3</sup> |      |         |         |         |      |         |                    |         |      |
|---------------------------------------------------------|-----------|------|--------------------|-------|---------|----------------------------------|----------|-------------------------------|---------|------|---------|---------------------------|---------------------|--------------------|--------------------------|------|---------|---------|---------|------|---------|--------------------|---------|------|
|                                                         |           |      |                    |       |         |                                  |          | STRENGTH                      |         |      |         | MODULUS                   |                     |                    | STRENGTH                 |      |         | MODULUS |         |      |         |                    |         |      |
| OUTLE                                                   |           |      | TYPICAL            |       | MINIMUM |                                  | STRENGTH |                               | TYPICAL |      | MINIMUM |                           | TYPICAL             |                    | MINIMUM                  |      | TYPICAL |         | MINIMUM |      | TYPICAL |                    | MINIMUM |      |
|                                                         | (in)      | (mm) | lb/ft <sup>2</sup> | kg/m² | lb/ft²  | kg/m²                            | psi      | MPa                           | psi     | MPa  | psi     | MPa                       | ksi                 | MPa                | ksi                      | MPa  | psi     | MPa     | psi     | MPa  | ksi     | MPa                | ksi     | MPa  |
| PP1-5.0-N1-8                                            | 0.315     | 8    | 5                  | 80.0  | 4.75    | 75.0                             | 130      | 0.89                          | 275     | 1.89 | 255     | 1.55                      | 11.5                | 79.2               | 9.5                      | 65.4 | 85      | 0.58    | 75      | 0.52 | 2.2     | 15.2               | 1.7     | 11.7 |
| PP1-4.0-N1-10                                           | 0.395     | 10   | 4                  | 64.0  | 3.8     | 60.0                             | 120      | 0.83                          | 180     | 1.24 | 140     | 0.96                      | 10.5                | 72.3               | 8.5                      | 58.5 | 60      | 0.41    | 55      | 0.38 | 2.0     | 13.8               | 1.5     | 10.3 |
| he data provided is base<br>f -01 (veil only) version o |           |      |                    | Teste |         | e Tensile<br>TM C 297            | ш        | <u>‡</u>                      |         |      |         | <sup>2</sup> Ba<br>Tested | re Comp<br>per ASTI | ression<br>d C 365 |                          |      |         |         |         | Te   |         | Plate St<br>ASTM C | ear /   |      |





Hull Structure

Fiberglass

Resin

- Inquired about other types of honeycomb
  - Polycarbonate
  - Aramid fiber
- Contact at Plascore stated polypropylene is the type of honeycomb most widely used for laying up with fiberglass







Hull Structure

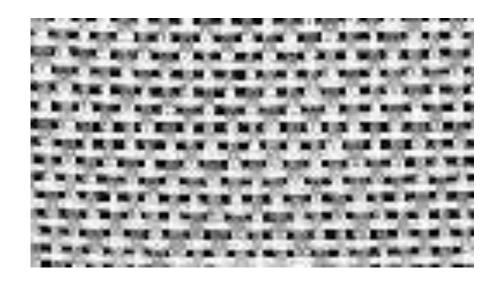
Fiberglass

- Both carbon fiber and fiberglass were considered
  - Carbon fiber costs 4-6 times as much
- Want to keep the craft light but strong
  - Previous team used 4 oz. E-Glass woven cloth
- This year, 4 oz. S-Glass woven cloth will be used

Resin Other








Hull Structure

Fiberglass

Resin

- S-Glass is used when extra strength is needed and extra weight is not desired
  - 40% higher tensile strength
  - 20% higher modulus
  - Greater abrasion resistance
  - Same working qualities as standard E-Glass
- Considered using a heavier E-Glass cloth instead
  - More resin required
  - Increased weight of craft







Hull Structure

Fiberglass

Resin

- Four brands of epoxy resin were compared
- West Systems 105 was chosen
  - Most widely used, reliable brand
  - Competitively priced with other resins of the same quality
- 4.35 gallon pail will be ordered







Hull Structure

Fiberglass

- West Systems 205 Fast Hardener
  - 9-12 minute working time
  - 6-8 hour drying time
- West Systems 206 Slow Hardener
  - 20-25 minute working time
  - 9-12 hour drying time
- Slow hardener will be used
  - Both have same cost
  - Increased working time is a plus
  - Increased drying time will not be an issue

Resin







Hull Structure

Fiberglass

Resin

| Group<br>Size | Resin<br>Quantity                    | Hardener<br>Quantity                  | Mixed<br>Quantity   | Saturation<br>Coat -<br>Porous<br>Surfaces | Build-Up<br>Coats Non-<br>porous<br>Surfaces | Tensile<br>Strength<br>(PSI)              |  |  |
|---------------|--------------------------------------|---------------------------------------|---------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|--|--|
| с             | WSY 105C -<br>4.35 Gal.<br>(16.47 L) | 205C or<br>206C94<br>Gal. (3.58<br>L) | 5.29 Gal.<br>(20 L) | 1530-1785<br>sq. ft. (142-<br>165 sq. m)   | 2040-2300 sq.<br>ft. (190-213<br>sq. m)      | 105/205 -<br>7,846,<br>105/206 -<br>7,320 |  |  |





Hull Structure

Fiberglass

- Fiberglass Shears
- Plywood
  - Create molds to piece together plenum chamber
- Heavy Duty Adhesive
  - Piece together plenum chamber before fiberglass is applied
- Paintbrushes







Hull Structure

Fiberglass

- Epoxy Pumps
  - Ensures correct ratio of resin to hardener
- Disposable Gloves
- Disposable Cups
  - For mixing resin and hardener
- Sandpaper

Resin







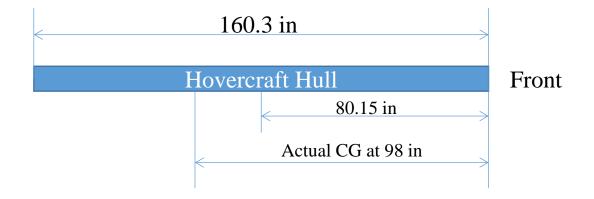
## **Costs**

| Item                                           | Cost       |
|------------------------------------------------|------------|
| Plascore                                       | \$617.00   |
| Fiberglass (500 sq. feet 4 oz. S-Glass)        | \$415.00   |
| Epoxy Resin/Hardener (4.35 gal/1 gal)          | \$453.00   |
| Resin Pumps                                    | \$12.00    |
| Heavy Duty Adhesive (Three 28 fl. oz. bottles) | \$25.00    |
| Plywood (Three 4'x8' sheets)                   | \$25.00    |
| Fiberglass Shears                              | \$35.00    |
| Other (gloves, cups, etc)                      | \$100.00   |
| Total Estimated Cost                           | \$1,682.00 |





# **Improvements**


Balance

Structural Weaknesses

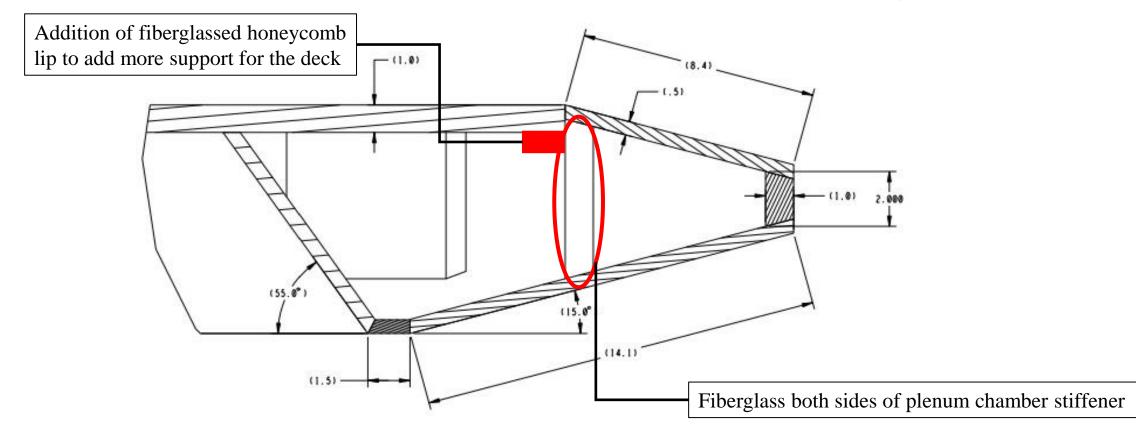
Measure Twice, Cut Once

- 2014 racecraft is very back heavy
  - CG is not at optimum location
  - Driver had to lean forward to attempt to balance the craft while racing
- Lift duct was moved further toward back of craft than was originally designed
  - Contributed to CG being too far aft
  - 2015 racecraft lift duct will be moved back to original designed location

#### Side View of 2014 Racecraft








# **Improvements**

Balance

Structural Weaknesses

Measure Twice, Cut Once







# **Improvements**

Balance

Structural Weaknesses

Measure Twice, Cut Once

- 2014 Racecraft
  - Jigsaw used to cut all pieces of honeycomb
  - Cuts were not necessarily straight
  - Angles were not properly cut
  - Pieces didn't fit together properly gap fill used as a remedy
- 2015 Racecraft
  - Measure TWICE, cut ONCE
  - Tablesaw will be used, especially for larger pieces and to cut angles properly
  - Avoid using gap fill





# Questions?



